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ABSTRACT
There is a number of recent research lines addressing com-
plex negotiations in highly rugged utility spaces. However,
most of them focus on overcoming the problems imposed
by the complexity of the scenario, without analyzing the
strategic behavior of the agents in the models they pro-
pose. Analyzing the dynamics of the negotiation process
when agents with different strategies interact is necessary
to apply these models to real, competitive environments,
where agents cannot be supposed to behave in the same way.
Specially problematic are situations like the well-known pris-
oner’s dilemma, or more generally, situations of high price of
anarchy. These situations imply that individual rationality
drives the agents towards strategies which yield low indi-
vidual and social welfares. In highly rugged scenarios, such
situations usually make agents fail to reach an agreement,
and therefore negotiation mechanisms should be designed to
avoid them. This paper performs a strategy analysis of an
auction-based negotiation model designed for highly rugged
scenarios, revealing that the approach is prone to the pris-
oner’s dilemma. In addition, a set of techniques to solve
this problem are proposed, and an experimental evaluation
is performed to validate the adequacy of the proposed ap-
proaches to improve the strategic stability of the negotiation
process.
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1. INTRODUCTION
In the last years, there has been an increasing interest

in complex negotiations which involve multiple negotiating
parties and multiple, interdependent issues [5]. Specially
challenging are those scenarios involving highly rugged util-
ity spaces, since traditional negotiation approaches (mostly
intended for linear or quasi-concave utility functions) cannot
be applied to these more complex scenarios.

We can find some successful research works in the litera-
ture addressing negotiation in complex utility spaces. In [4],
an auction-based protocol is proposed for nonlinear utility
spaces generated using weighted constraints. This approach
is based on taking random samples of the contract space
and applying simulated annealing to these samples to iden-
tify high utility regions for each agent, sending these regions
as bids to a mediator, and then performing a search in the
mediator to find overlaps between the bids of the different
agents. In a similar scenario [8], we proposed to take sam-
ples from the constraints space instead. Experiments show
that these approaches achieve high effectiveness (measured
as high optimality rates and low failure rates for the nego-
tiations) in moderately rugged utility spaces.

In [9], we joined efforts with the the aforementioned au-
thors to address highly-rugged utility spaces. We proposed
the use of a quality factor to balance utility and deal proba-
bility in the negotiation process. This quality factor is used
to bias bid generation and deal identification taking into ac-
count the agents’ attitudes towards risk (i.e. allowing agents
to give more importance to utility or to deal probability de-
pending on their own attitudes towards risks). The experi-
ments show that this balance between utility and deal prob-
ability greatly improves the effectiveness of the negotiation
in highly-rugged utility spaces.

However, the proposed approach draws several concerns.
Though the quality factor is supposed to be able to model
agents’ risk attitudes, the experiments limit these attitudes
to a somewhat “cooperative” environment, where all agents
have the same, neutral risk attitude. In a real, competi-
tive environment, we expect to have agents with different
risk attitudes interacting. This raises the problem of agent
strategic behavior. What happens when risk averse agents
interact with risk willing agents? Is there a dominant strat-
egy? If so, does this dominant strategy lead to satisfying so-
lutions, or is the approach prone to the prisoner’s dilemma?
Furthermore, since the complexity (i.e. ruggedness) of the
utility spaces of the agents may also vary, it seems logical to
think that agent strategies should vary accordingly. In this
paper, we intend to address these questions in the following
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ways:

• We perform a strategy analysis of the auction-based
protocol for constraint-based utility spaces. This anal-
ysis allows us to determine the individual dominant
strategy and the optimal social strategy for different
utility space ruggedness levels. From the results of the
analysis we conclude that the auction-based protocol,
as described in [9], has stability problems, being prone
to the prisoner’s dilemma (Section 3).

• We propose a set of mechanisms intended to avoid the
prisoner’s dilemma in the analyzed protocol. These
approaches are based on decoupling the agent’s strate-
gies from the deal identification process, by applying
different techniques on the mediator after the agents
have sent their bids (Section 4).

An experimental evaluation has been performed to validate
our hypothesis and evaluate the effects of our contributions.
The experimental setting is described in Sections 3.2 and 4.2,
along with the discussion of the results obtained. Finally,
our proposal is briefly compared to the most closely-related
works in the state-of-the-art (Section 5). The last section
summarizes our conclusions and sheds light on some future
research.

2. AUCTION-BASED NEGOTIATIONS IN
HIGHLY RUGGED UTILITY SPACES

The work we propose is a contribution to the strategic be-
havior of the agents in auction based negotiations for com-
plex utility spaces. In this section, we outline the most rel-
evant previous works our research is related to.

2.1 Constraint-based Nonlinear Utility Spaces
Nonlinear agent preferences can be described by using dif-

ferent categories of functions, like K-additive utility func-
tions, bidding languages, or weighted constraints [9]. In
this work we focus on nonlinear utility spaces generated by
means of weighted constraints. In these cases, agents’ util-
ity functions are described by defining a set of constraints.
Each constraint represents a region with one or more di-
mensions, and has an associated utility value. The number
of dimensions of the space is given by the number of is-
sues n under negotiation, and the number of dimensions of
each constraint must be lesser or equal than n. The utility
yielded by a given potential solution (contract) in the util-
ity space for an agent is the sum of the utility values of all
the constraints that are satisfied by that contract. Figure 1
shows a very simple example for two issues and three con-
straints: a unary constraint C1 and two binary constraint
C2 and C3. The utility values associated to the constraints
are also shown in the figure. In this example, contract x
would yield a utility value for the agent u(x) = 15, since
it satisfies both C1 and C2, while contract y would yield a
utility value u(y) = 5, because it only satisfies C1. It can
also be noted that unary constraint C1 can be seen as a bi-
nary constraint where the width of the constraint for issue
2 is all the domain of the issue, so we can generalize and say
that all constraints have n dimensions.

More formally, we can define the issues under negotiation
as a finite set of variables x = {xi|i = 1, ..., n}, and a con-
tract (or a possible solution to the negotiation problem) as
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Figure 1: Example of a utility space with two issues
and three constraints

a vector s = {xs
i |i = 1, ..., n} defined by the issues’ values.

Issues take values from the domain of integers [0, X].
Agent utility space is defined as a set of constraints C =

{ck|k = 1, ..., l}. Each constraint is given by a set of in-
tervals which define the region where a contract must be
contained to satisfy the constraint. In this way a constraint
c is defined as c = {Ici |i = 1, ..., n}, where Ici = [xmin

i , xmax
i ]

defines the minimum and maximum values for each issue to
satisfy the constraint. Constraints defined in this way de-
scribe hyper-rectangular regions in the n-dimensional space.
Each constraint ck has an associated utility value u(ck).

A contract s satisfies a constraint c if and only if xs
i ∈

Ici ∀i. For notation simplicity, we denote this as s ∈ x(ck),
meaning that s is in the set of contracts that satisfy ck.
An agent’s utility for a contract s is defined as u(s) =∑

ck∈C|s∈x(ck)
u(ck), that is, the sum of the utility values of

all constraints satisfied by s. This kind of utility functions
produces nonlinear utility spaces, with high points where
many constraints are satisfied, and lower regions where few
or no constraints are satisfied.

2.2 Auction-based Approaches to Negotiation
in Highly Rugged Utility Spaces

Ito et al. [4] presented a bidding-based protocol to deal
with nonlinear utility spaces generated using weighted con-
straints. The protocol consists on the following four steps:

1. Sampling: Each agent takes a fixed number of ran-
dom samples from the contract space, using a uniform
distribution.

2. Adjusting: Each agent applies simulated annealing to
each sample to try to find a local optimum in its neigh-
borhood. This results in a set of high-utility contracts.

3. Bidding: Each agent generates a bid for each high-
utility, adjusted contract. The bids are generated as
the intersection of all constraints which are satisfied by
the contract. Each agent sends its bids to the media-
tor, along with the utility associated to each bid.

4. Deal identification: The mediator employs breadth-
first search with branch cutting to find overlaps be-
tween the bids of the different agents. The regions of
the contract space corresponding to the intersections
of at least one bid of each agent are tagged as potential
solutions. The final solution is the one that maximizes
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joint utility, defined as the sum of the utilities for the
different agents.

In [8], we proposed an alternative perspective for the bid-
ding process, looking at the constraint-based agent utility
space as a weighted undirected graph. Consider again the
simple utility space example shown in Figure 1. Think about
each constraint as a node in the graph, with an associated
weight which is the utility value associated to the constraint.
Now we will connect all nodes whose corresponding con-
straints are incompatibles, that is, they have no intersection.
The resulting graph is shown in Figure 2.

To find the highest utility bid in such a graph can be seen
as finding the set of unconnected nodes which maximizes the
sum of the nodes’ weights. Since only incompatible nodes
are connected, the corresponding constraints will have non-
null intersection. In the example, this would be achieved by
taking the set {C1, C2}. The problem of finding a maximum
weight set of unconnected nodes is a well-known problem
called maximum weight independent set (MWIS). Though
MWIS problems are NP-hard, in [1], a message passing al-
gorithm is used to estimate MWIS, which greatly reduces
the complexity of the search.

Since the algorithm is deterministic, only one bid can be
generated for a given set of constraints. To solve this, in
[8], the algorithm is applied to a subset of constraints C′ =
{c′k|k = 1, ..., nc;nc < l; c′k ∈ C}. The constraints c′k are
randomly chosen from the constraint set C. In this way,
a different constraint subset C′ is passed to the algorithm
at each run, which will result in different, non-deterministic
bids.
Both approaches are evaluated in nonlinear scenarios for

different number of agents and issues, and they achieve great
results in terms of optimality (measured as the ratio between
the solutions found using the protocol and the optimal solu-
tion computed using complete information) and failure rate
(measured as the ratio between unsuccessful negotiations
and total negotiations).

2.3 Constraint/Bid Quality Factor for Highly
Rugged Utility Spaces

The use of weighted constraints generates a “bumpy” util-
ity space, with many peaks and valleys. However, the de-
gree of “bumpiness”may vary from one scenario to another.
More formally, the complexity of the utility spaces of the
agents may be measured using a correlation length, which
has been widely used to asses fitness landscape complexity
in evolutionary computation [13]. Correlation length is de-
fined as the minimum distance between samples in the util-
ity space which makes the correlation between those samples
drop below a given threshold. Intuitively, the main differ-
ence between highly correlated and highly uncorrelated (i.e.
highly rugged) utility spaces is the width of the high-utility
regions. Highly-rugged scenarios will yield narrower peaks.
Since the mechanisms outlined above lead agents to choose
those peaks (or high-utility regions) as bids, the result is
that narrower bids will be sent to the mediator. The width
of the bids (or more generally, the volume of the bids, com-
puted as the cardinality of the set of contracts which match
the bid), will directly impact the probability that the bid
overlaps a bid of another agent, and thus its viability, that
is, the probability of the bid resulting in a deal. In [9], we
introduced the hypothesis that an agent with no knowledge
of the other agents’ preferences should try to adequately bal-

Figure 2: Weighted undirected graph resulting from
the utility space in Figure 1

ance the utility of their bids (to maximize its own profit) and
the volume of those bids (to maximize the probability of a
successful negotiation). To allow this, we defined the quality
factor of a constraint or a bid as Qc = uα

c · v1−α
c , where uc

and vc are, respectively, the utility and volume of the bid
or constraint c, and α ∈ [0, 1] is a parameter which models
the risk attitude of the agent. A risk averse agent (α < 0.5)
will tend to qualify as better bids those that are wider, and
thus are more likely to result in a deal. A risk willing or self-
ish agent (α > 0.5) will, in contrast, give more importance
to bid utility. Finally, we proposed a set of mechanisms to
integrate this quality factor into the bidding and deal iden-
tification steps of the negotiation process described in their
previous works, and validate their hypothesis through a set
of experiments that show how the proposed approach im-
proves the negotiation process both in terms of effectiveness
and performance.

Though the approach proposed in [9] yields satisfactory
results in highly-rugged utility spaces, there are some is-
sues which are not addressed in the work. Even when the
quality factor is designed to model the risk attitudes of the
agents through its α parameter (and thus α allows to model
agent strategies), the experimental evaluation is performed
only for α = 0.5. This assumes that all negotiating agents
have the same attitude towards risk, and also that this risk
attitude is neutral (i.e. agents give the same weight to util-
ity and deal probability). In a real, competitive scenario,
these assumptions do not necessarily hold, and therefore a
strategy analysis is needed to evaluate the mechanisms in
situations where agents with different risk attitudes inter-
act.

3. STRATEGY ANALYSIS
One of the main challenges in mechanism design for au-

tomated negotiation is strategic stability. Here stability is
seen as the impossibility (or at least difficulty) to manip-
ulate the mechanisms by means of strategies. This means
that the mechanisms must motivate the agents to behave
in an adequate way, since if a rational agent may benefit
from taking a given strategy instead of the one expected
by the mechanisms, it will do so. This problem is closely
related to the notion of equilibrium in game theory [14, 6].
For heuristic approaches such as those described in [9], game
theory analyses cannot be directly applied, but some of the
concepts can still be useful.

For instance, we can talk about a dominant strategy if
there is a strategy which is always the best choice for an
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agent, whatever the other agents do. In most cases, however,
an agent’s best strategy depends on the strategies used by
its opponents, and stability is achieved by means of strategy
profiles (sets of strategies for every agent). A given strategy
profile F = {f1, . . . , fN} is said to be an equilibrium for a
given setting if every agent i has no better strategy than fi,
provided that the other agents j play their corresponding
strategies fj . That means that, if all agents use their corre-
sponding equilibrium strategies, there is no incentive for any
agent to deviate from that set of strategies [10]. Of course,
finding these equilibrium conditions for a given mechanism
may be a very complex task. Furthermore, equilibrium con-
ditions may be non-unique, which generates the additional
problem of determining which of the equilibrium strategy
profiles to use for a given negotiation. Finally, the stabil-
ity of a negotiation mechanism does not guarantee social
welfare maximizing solutions. In many situations, individ-
ual rationality drives agents towards strategies which yield
low individual and social welfares. Those situations, which
should be avoided in mechanisms design, are usually called
instances of the well-known prisoner’s dilemma [12] or, more
generally, situations of high price of anarchy (PoA) [11].

As we stated above, the equilibrium concepts outlined
here are related to game theory, and thus are very difficult
to determine for heuristic negotiation mechanisms. How-
ever, probabilistic analysis and empirical evaluations can be
performed in an analogous manner for these mechanisms.
The rest of this section is dedicated to assess the strategic
behavior of the approach proposed in [9], determining the
existence of dominant individual strategies and social opti-
mal strategies, and verifying if the auction-based negotiation
mechanisms are prone to the prisoner’s dilemma.

3.1 Probabilistic Analysis
Intuitively, it can be seen that the quality factor defined

in [9] allows an agent to balance bid utility (to maximize its
own benefit) and bid volume (to maximize deal probability).
More formally, we may find mathematic expressions for the
deal probability and the expected utility in a negotiation
using the auction-based protocol. The deduction of these
expressions is beyond the scope of this paper, and can be
found in [7]. For this work, the final expressions will suffice.
In particular, deal probability for a single run of the auction-
based negotiation protocol is given by

Pdeal =

∏
nk
bp∑

j=1

(−1)j+1

(∏
nk
bp

j

)(
1

|D|n(na−1)

)j

, (1)

where na is the number of negotiating agents, n is the num-
ber of issues, |D| is the domain size for the issues (assuming
all issues have the same domain size), and nk

bp is the number
of bidden contracts for agent k, that is, an indication of the
portion of the solution space which is covered by agent k

bids. This is given by nk
bp =

∑nk
b

l=1 v
k
l , where nk

b is the num-

ber of bids issued by agent k and vkl is the volume of each
l-th bid.

In a similar way, we can see that the expected utility for
agent k is given by

E[uk] =

⎡
⎣ nk

b∑
l=1

uk
l · vkl

⎤
⎦
⎡
⎢⎣

∏
nk
bp∑

j=1

(∏
nk
bp

j

)
(−1)j+1

|D|n(na−1)j

⎤
⎥⎦ , (2)

where uk
l is the utility for the l-th bid of agent k. According

to this expression, to maximize expected utility, an agent
should reveal as much information as possible. If informa-
tion disclosure is limited, an agent should try to maximize∑nk

b
l=1 u

k
l · vkl , balancing in this way bid utility and bid vol-

ume. This is coherent to the choice of α = 0.5 in [9]. Of
course, this strategy does not model the attitude of a risk
willing agent, who would prefer to risk the success of the
negotiation to have the chance of a higher utility gain. To
model this, we can use an expected deal utility, that is, the
expected utility for an agent provided that a deal has been
reached. This expected deal utility is given by:

E[uk |deal ] =
∑nk

b
l=1 u

k
l · vkl

nk
bp

(3)

According to this, a risk willing agent would give prefer-
ence to bid utility against bid volume, trying to reduce nk

bp

to maximize expected deal utility, but reducing also deal
probability.

These expressions are coherent with the intuitive notion
of agent risk attitude introduced in the quality factor in [9].
We can also use them to infer some of the strategic prop-
erties of the protocol. Since deal probability increases with
deal volume, low values of α are expected to increase deal
probability too. As we have seen, when there is total uncer-
tainty about the utility spaces of the agents, the expected
utility is maximized for α = 0.5. If the utility spaces of
the agents are specially complex (highly uncorrelated), it is
reasonable to think that the deal probability will be lower,
and thus agents should use lower values of α (that is, they
should take less risks) in order to keep expected utility at an
acceptable value. Similarly, if the agent’s utility spaces are
highly correlated, agents could use higher α values (that is,
be more utility oriented), trying to maximize the expected
deal utility, since deal probability will be higher. Further-
more, since lower α values increase deal probability, a single
agent could benefit from a risk-willing strategy if the other
agents are risk averse (their lower α values would compen-
sate the decrement in deal probability). However, should all
agents decide to use risk willing strategies, deal probability
would reduce drastically, leading to low expected individual
and social welfares. As stated above, this would be a situ-
ation of high price of anarchy, analogous to the prisoner’s
dilemma.

3.2 Experimental Analysis
In this section the strategic properties of the protocol in-

ferred from the statistical analysis are empirically verified.
First of all, individual equilibrium is studied, trying to deter-
mine the existence of a dominant strategy, which is the best
strategy for an agent under any circumstance, or whether
there is an optimal strategy for an agent depending on the
strategies of the other agents.

To evaluate this, we have performed a set of experiments
comparing the utility obtained by a individualist agent, using
a strategy determined by αi, with the utility obtained by
the other agents, which use a strategy determined by αs.
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Figure 3: Individual equilibrium analysis

Experiments have been performed varying αi y αs within
the interval [0, 1] in 0.1 steps.

Figure 3 shows the results of the experiments for 6 agents
and 6 issues. We have represented the ratio between the
utility obtained by the individualist agent and the utility
obtained by the rest of the agents for different values of
αi y αs. For αs > 0.8 negotiations failed, and thus no
values are shown in the figures. Generally, the individualist
agent obtains a higher utility than the rest of the agents
when using higher αi values. In particular, for any αs, the
maximum utility value for the individualist agent is obtained
for αi = 1, so we can conclude that this is the individual
dominant strategy for the agents.

Once individual strategies have been analyzed, we have
studied social strategies, trying to determine the existence
of a set of strategies for the different agents which maxi-
mizes social welfare. Since both the negotiation model and
the measure we have taken for social welfare (Nash product)
are symmetric, we expect this strategy set to be symmetric
as well. Taking this into account, we have performed a set
of experiments using for all agents the same social strategy,
determined by αs. Experiments have been conducted var-
ing αs within the interval [0, 1] in 0.1 steps. Furthermore,
to study the variation of the results with the complexity of
the utility spaces, the experiments have been repeated for
utility spaces of different complexity. Utility space complex-
ity have been measured using a correlation length ψ. As
introduced in Section 3.1, correlation length is defined as
the minimum distance between samples in the utility space
which makes the correlation between samples drop below
a given threshold. For the purpose of this work, we have
chosen a threshold of 0.7.

Experiment results for 6 agents and 6 issues are presented
in Table 1. The table shows the median social welfare op-
timality for the negotiation as the value of αs varies, for
different values of ψ. Optimality is defined as the ratio be-
tween the social welfare obtained with the protocol and the
social welfare obtained using an optimizer with complete in-
formation. We can see that the α values which maximize
social optimality are around 0.6 and 0.8. This is higher
than the theoretical optimum (α = 0.5), which is reason-
able if we think that calculations were made assuming total
uncertainty about the utility space (that is, ψ = 0).

Once an optimal social strategy has been identified, a de-
sirable property would be that this strategy were an equi-

librium for the system, that is, that there was no incentive
for any agent to deviate from this strategy. Unfortunately,
as we seen above, there is a dominant individual strategy,
given by αi = 1. Therefore, an individually rational agent
may decide to take this strategy to maximize its own ben-
efit. All agents have the same incentive, so equilibrium is
reached when all agents choose αi = 1. As we can see in
Table 1, this makes negotiation fails in medium and highly
complex scenarios. This confirms that the protocol is prone
to the prisoner’s dilemma.

4. AVOIDING THE PRISONER’S DILEMMA
IN THE AUCTION-BASED NEGOTIATION
PROTOCOL

In this section, stability problems of the auction-based
negotiation protocol are addressed. A set of different mech-
anisms intended to avoid high price of anarchy situations in
the negotiation process are proposed, and their effectiveness
is empirically evaluated.

4.1 Enforcing Socially-oriented Strategies at
the Mediator

To improve the strategic stability of the negotiation, the
mechanisms should be modified to incentivize the adoption
of socially optimal strategies. The logical step in the proto-
col to make any modification is the deal identification at the
mediator. Since negotiating agents are supposed to be indi-
vidually rational, it is the mediator the only one who can be
assumed to pursue social welfare. In the basic protocol pro-
posed in [9], the mediator chooses as the final solution the
one maximizing social welfare, computed as the Nash prod-
uct of the individual agent utilities. Since the Nash product
is symmetric, those agents whose bids have higher average
utility would, on average, obtain higher utilities in the final
deal, which incentivizes the use of the dominant strategy.
To mitigate this effect, a reasonable measure could be to
reward in the selection of the final solution to those agents
which have made wider bids. To achieve this, we propose
a modification of the Nash product which we have called
weighted product by average volume:

swV̄ (s, U) =

na∏
i=1

(
ui (s)

) v̄i

max1≤j≤na
v̄j

, (4)

where ui (s) is the utility of the solution s for agent i, and
v̄i is the average volume of the bids issued by agent i.
In this way, the utility for those agents who have issued

widest bids (which, on average, will be the ones using more
socially oriented strategies) will be given more weight in the
selection of the final solution than those of the more selfish
agents. An interesting effect of this metric is that a rational
agent could issue some high volume, low utility bids to try to
compensate for its high-utility, low volume bids. To counter
this effect, a product weighted by average quality factor is
proposed:

swQ̄(s, U) =

na∏
i=1

(
ui (s)

) Q̄i

max1≤j≤na
Q̄j

, (5)

where Q̄i is the average quality factor of the bids issued by
agent i.
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Table 1: Social strategy analysis
αs

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ψ0.7

2.8 0.3335 0.3788 0.3836 0.3765 0.4336 0.4801 0.5521 0.4855 0 0 0
3.1 0.4600 0.5282 0.4951 0.5041 0.5544 0.5553 0.5960 0.6822 0 0 0
4.0 0.7954 0.7849 0.7977 0.8137 0.8211 0.8380 0.8283 0.8270 0.8139 0 0
4.3 0.9672 0.9634 0.9759 0.9608 0.9728 0.9690 0.9710 0.9707 0.9774 0 0
4.6 1.0000 1.0000 0.9748 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Finally, bid selection for deal identification at the medi-
ator is performed using the quality factor of the bids as
declared by the agent issuing the bids. This makes the asses-
ment of the bids made by the mediator dependent on the risk
attitudes of the agents, thus favoring those agents with more
selfish strategies. Taking this into account, we propose that
the mediator uses its own αm parameter for Q calculation.
In this way, we expect to decouple deal identification from
the negotiating agent strategies, improving the stability of
the protocol. Possible choices for αm are the optimal social
strategy for a given correlation length, or αm = 0.5, which
is the theoretical optimal value if there is total uncertainty
about the agents’ utility spaces. However, there is a prob-
lem with using such αm values. Any αm ≥ 0.5 would give
at least the same weight to bid utility than to bid volume.
Because of this, it would not be possible for the mediator to
discriminate whether a given bid has a high quality factor
due to its high volume (thus being probably a bid issued by
a socially oriented agent) or due to its high utility (and thus
probably generated by a selfish agent). It seems reasonable
to use αm < 0.5, giving more weight to higher volume bids,
and thus enforcing social behavior among agents. The limit
would be to use αm = 0, which would make the mediator
to select bids according only to their volume, regardless of
their utility. Our hypothesis is that this would totally de-
couple the deal identification mechanism from the strategic
behavior of the negotiating agents, thus improving protocol
stability.

4.2 Stability Analysis
Stability analysis is oriented to determine the possibility

of an agent manipulating the negotiation to its own ben-
efit. In the model we are dealing with, this manipulation
may occur when an agent deviates from the social strategy
taking a more selfish approach. To evaluate this empiri-
cally, we have performed experiments comparing the utility
obtained by an individualist agent, using its dominant strat-
egy αi = 1, against the utility obtained by the rest of agents,
which will be using the corresponding optimal social strat-
egy αs. Experiments have been made for utility spaces with
different correlation lengths. Furthermore, since the model
is designed for multiagent negotiations, experiments have
been performed for different number of individualist agents,
thus studying the effect of possible coalitions or coincidences
of selfish agents.

Table 2 presents the results of the experiments for 6 agents
and 6 issues, showing the ratio between utilities for indi-
vidualist agents and social agents for different correlation
lengths and different number of individualist agents. The
table shows the medians and the 95% confidence intervals
for 100 runs of each experiment. We can see that there
is only a significative gain for the individualist agents in
medium complexity scenarios. For highly complex scenar-
ios (low correlation length), individualism make negotiations
fail, and thus there is no incentive for any agent to devi-

ate from the social strategy. For more correlated scenarios
(ψ0.7 = 4), we can see that an individualist agent may ob-
tain a benefit of about 200%, though coalitions are not likely,
since an increase in the number of individualist agents make
negotiations fail. For ψ0.7 = 4.3, coalitions seem viable, as
they increase the benefit for the individualist agents. Fi-
nally, for the less complex scenarios (ψ0.7 ≥ 5.9), a selfish
attitude does not provide a significant difference in utility,
since all agents get high utilities with the social strategy.
From these results we can conclude that the model is stable
in low complexity and high complexity scenarios, and that
the scenarios of medium complexity make stability problems
arise, and require the application of additional mechanisms.

In the previous section, a set of alternative mechanisms for
deal identification at the mediator were proposed. Those
mechanisms were intended to incentivize agents to social
behavior, and thus solve the stability problems of the model.
To evaluate the effect of the proposed mechanisms on the
stability of the protocol, we have repeated the experiments
for the different approaches discussed in Section 4.1:

Nash Reference approach, using Nash product.

Average V Product weighted by average bid volume (Equa-
tion 4).

Average Q0.5 Product weighted by average quality factor
(Equation 5), with αm = 0.5, corresponding to the
theoretical optimal social strategy.

Average Q0 Product weighted by average quality factor
(Equation 5), with αm = 0, corresponding to a deal
identification strategy totally decoupled from agent util-
ity (the mediator only considers bid volume).

Figure 4 presents the results of the experiments for 6
agents and 6 issues for the most critical scenarios in terms
of stability found in the previous experiment (ψ0.7 = 4 and
ψ0.7 = 4.3). Each graphic presents a box-plot for the fi-
nal outcomes of 100 runs of the experiment. The horizon-
tal axis represents the approach under evaluation, while in
the vertical axis we have represented the optimality rate as
notched box and whisker plots. The boxes have lines for
the median and the 25th and 75th percentiles of the gain for
individualist agents in each negotiation (computed as the ra-
tio between the utilities obtained by individualist and social
agents), and the whiskers show adjacent values in the data.
Outliers are displayed with a plus (+) sign. Notches display
the variability of the median between samples. We can see
that the mechanism based on average volume provides no
improvement is stability, since for both cases median utility
results are higher for individualist agents. The mechanism
based on average quality factor, however, adequately im-
proves the stability of the protocol, and this improvement
is greater for αm = 0. From these results we can conclude
that decoupling deal identification from the attitudes of the
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Table 2: Stability analysis for 6 agents and 6 issues
Number of individualist agents

1 2 3

median conf. interval median conf. interval median conf. interval

ψ0.7

2.8 – – – – – –
3.1 – – – – –
4.0 2.0086 [1.8574,2.1598] – – – –
4.3 1.1066 [1.0610, 1.1522] 1.1986 [1.1431,1.2541] – –
4.6 0.9795 [0.9567, 1.0024] 1.0081 [0.9870, 1.0292] 0.9785 [0.9567,1.0003]
5.9 1.0336 [1.0081, 1.0591] 1.0243 [1.0043, 1.0443] 0.9811 [0.9598,1.0024]

negotiating agents by making the mediator calculate its own
quality factor improves strategic stability of the negotiation
process.

Finally, we need to consider the effect of these approaches
over the Nash optimality of the negotiation. Since these
techniques give preference to socially oriented offers against
higher utility offers, this may make final deals to be further
from the theoretical optimum. To evaluate this, Table 3
show median optimality rates for the different approaches,
measured as the ratio between the Nash utility achieved by
the protocol and the Nash utility obtained using an opti-
mizer with complete information. As a reference, the results
obtained by the approach in [9] have been included. Results
show that the approaches which improve stability suffer a
slight decrement in optimality for the most correlated sce-
narios, and an increment in optimality for the most uncorre-
lated ones (due to the decrement in failure rate). However,
this decrement is not statistically significative. We can con-
clude that it is possible to stabilize the model to a great
extent by having the mediator compute its own quality fac-
tor Q, and that this improved stability has no significative
impact over Nash optimality.

5. DISCUSSION AND RELATED WORK
There is a number of recent research lines addressing com-

plex negotiations. Most of them provide a way to overcome
the complexity of intractable utility spaces, be it by approx-
imating these complex spaces by means of simpler utility
functions [3], or by developing heuristic mechanisms which
perform a more efficient search for deals in the solution space
[4]. However, very few works address agents’ strategic be-
havior in their proposed models. In [9], we find the first ref-
erence in complex negotiations to the possibility of agents
having a wide range of strategies with the notion of risk
attitude they introduce in their model. Though the model
supports agents’ strategic behavior, they do not analyze the
negotiation dynamics when agents with different strategies
interact, neither prove the strategic stability of their model.
In this paper, we have performed both a theoretical analysis
and an experimental evaluation of the model. This hybrid
approach is motivated by the fact that the decision mecha-
nisms for the negotiating agents and the mediator are based
on heuristics, and thus a systematic analysis as the per-
formed in [2] was not feasible.

The strategy analysis has allowed us to identify some se-
rious stability concerns, like the fact that the auction-based
protocol is prone to high price of anarchy situations, which
is an undesirable property for any negotiation approach. To
overcome this problem, we have proposed a set of measures
intended to incentivize social behavior among negotiating
agents. The proposed mechanisms are based on biasing deal
identification at the mediator to give preference to the most
socially oriented bids. This is somewhat similar to the ap-
proach taken in [5] for bilateral negotiations with binary is-
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Figure 4: Effect of the different mechanisms on the
stability of the protocol for the most critical scenar-
ios: a) ψ0.7 = 4, b) ψ0.7 = 4.3
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Table 3: Effect of the different mechanisms over Nash optimality
Mechanism

Reference Average V Average Q 0.5 Average Q 0

median conf. interval median conf. interval median conf. interval median conf. interval

ψ0.7

2.8 0 [0, 0] 0.5028 [0.4696, 0.5359] 0.5358 [0.5043, 0.5674] 0.5196 [0.4888, 0.5503]
3.1 0 [0, 0] 0.5828 [0.5546, 0.6110] 0.6063 [0.5783, 0.6343] 0.5962 [0.5727, 0.6196]
4.0 0.7733 [0.7319, 0.8148] 0.8379 [0.8092, 0.8667] 0.7731 [0.7509, 0.7954] 0.8142 [0.7900, 0.8384]
4.3 0.9746 [0.9521, 0.9808] 0.9639 [0.9580, 0.9698] 0.9617 [0.9539, 0.9694] 0.9734 [0.9655, 0.9812]
4.6 1.0000 [1.0000, 1.0000] 1.0000 [0.9951, 1.0000] 1.0000 [0.9953, 1.0000] 1.0000 [0.9936, 1.0000]
5.9 1.0000 [1.0000, 1.0000] 1.0000 [1.0000, 1.0000] 1.0000 [1.0000, 1.0000] 1.0000 [1.0000, 1.0000]

sue dependencies, though our approach allows the negotiat-
ing agents to retain control of their strategic profile, instead
of delegating it to the mediator.

6. CONCLUSIONS AND FUTURE WORK
The prisoner’s dilemma, or more generally, high price of

anarchy situations, which imply that individual rationality
drives the agents towards strategies which yield low indi-
vidual and social welfares, are conditions which should be
avoided at all costs when designing negotiation mechanisms.
This is specially important when dealing with complex ne-
gotiations involving highly rugged utility spaces, since in
these cases “low individual and social welfare” often means
that the negotiations fail. Therefore, an strategic analysis is
paramount for any model intended to work for highly rugged
utility spaces, in order to determine the strategic properties
of the model and to allow to establish additional mechanisms
for stability if needed.

In this paper we have performed a strategy analysis for the
auction based negotiation protocol for highly rugged utility
spaces proposed in [9]. This strategy analysis has started
studying the equilibrium conditions, which has revealed the
existence of an individual dominant strategy, which is dif-
ferent from the socially optimal strategy. A more in-depth
stability analysis has shown that, for highly correlated or
lowly correlated scenarios, there is no incentive for negoti-
ating agents to deviate from the socially optimal strategy.
However, for medium complexity scenarios a selfish agent
may benefit from using its dominant strategy, which raises
stability concerns, leading the model to a situation analo-
gous to the well-known prisoner’s dilemma. To solve this, we
have proposed a set of mechanisms intended to incentivize
social behavior among negotiating agents. These mecha-
nisms are based on biasing deal identification at the media-
tor towards those bids which are more socially oriented, thus
decoupling the search for social welfare from the individual
agents’ goals. Experiments show that the proposed mecha-
nisms successfully stabilize the protocol. However, there is
still plenty of research to be done in this area. We are inter-
ested on adaptive measures, allowing the mediator to deduce
agent strategies during the negotiation process, and thus to
apply the different mechanisms as needed. In addition, the
effect of the correlation between the utility functions of dif-
ferent agents (as opposed to the correlation distance within
each agent’s utility function) should be analyzed. Finally,
we are working on the generalization of these approaches for
other negotiation protocols and utility function types.
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